
 
 

 

  
Abstract— A set of modern heuristic techniques is reviewed 

in the context of PID control structures optimization. The 
selected techniques are: simulated annealing, genetic 
algorithm, population based incremental learning algorithm, 
particle swarm optimization algorithm and the differential 
evolution algorithm. An introduction to each algorithm is 
provided followed by an illustrative example based in a 
simulation assignment of an evolutionary algorithms course. 
Some conclusions are presented about the effectiveness of the 
reviewed heuristics based on the simulation results. 

I. INTRODUCTION 
HE study of optimization techniques within 
engineering courses is of crucial importance. Indeed, 

this is well stated in the following quotation from Schwefel 
[12] extracted from Michalewicz book [10] introductory 
chapter: "There is scarcely a modern journal, whether of 
engineering, economics, management, mathematics, 
physics or social sciences, in which the concept 
'optimization' is missing from the subject index". Thus, this 
is a topic that should be addressed in lecturing modern 
heuristics to engineering courses as one of their main 
applications is to solve optimization problems. This is the 
case of the course entitled evolutionary algorithms of the 
MSc in Engineering Technologies at the UTAD University 
in Portugal. During this course several assignments were 
given to students consisting either in elaborating a 
heuristic/evolutionary computation topic survey or to apply 
an evolutionary inspired algorithm to solve an engineering 
problem. One of the selected assignments, which motivated 
this article, concerns the optimization of proportional 
integral and derivative (PID) controllers in the continuous 
time domain using different modern heuristics. In this 
paper a series cascaded control configuration is considered. 

The PID controller is the most popular controller used in 
industrial control applications. The overwhelming 
dominance of PID controller over other forms of feedback, 
in the last fifty years, its due to its simple structure and 
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reliability in a wide range of operating conditions. Some 
estimates state that more than 95% of the controllers used 
in process control applications are of PID type [1]. Due to 
the wide acceptance of PID controllers within industry 
many tuning rules have been proposed for this type of 
controller, since the original work of Ziegler and Nichols 
[15]. However, despite the huge amount of existing tuning 
rules for PI/PID controllers, the test of a large set of 
industrial plants [4], indicated that 30% of the controllers 
were operated manually and 65% were poorly tuned. 
Indeed, plant operators tend to tune PID controllers by trial 
and error or using very simple tuning rules. A plausible 
explanation is the lack of appropriate educational 
background from most of the process control operators [11] 
concerning the proper use of tuning methodologies. In 
some cases, the control operator can be responsible for 
hundreds of process control loops [2], with a wide range of 
system dynamics, having to design and tune PID 
controllers to meet performance and robustness 
specifications. Considering the huge number of tuning rules 
proposed for different process models and the limited 
amount of effort that the plant operator can devote to each 
loop, the existence of an universal tuning method would 
simplify their role significantly. Because there is not an 
universal tuning method, the use of an optimization 
algorithm, particularly using modern heuristics, constitutes 
a global tool to the design and tuning of PID controllers for 
a wide range of control engineering applications.  

II. REVIEW OF SOME MODERN HEURISTIC ALGORITHMS  
 
This section provides a short review of some modern 
heuristic algorithms from an optimization perspective. The 
algorithms description is based on their original forms with 
minor extensions, in order to maintain the conceptual 
simplicity that made them easily understandable, 
motivating their wide implementation and use. 

A potential solution for a general combinatorial 
optimization problem in a n-dimensional search space 
defined by an objective function f (1), can be represented 
by a vector Ω∈x

r
 (2), in which t represents the current 

iteration and Ω  the feasible set. An important issue within 
any optimization methodology is how to generate a new 
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trial solution vector ( ) Ω∈+1tx
r

. This can be generated 

from the current vector by using equation (3), with δ
r

 
representing an incremental vector (4). 
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A. Simulated annealing 
The basic simulated annealing algorithm proposed by 

Metropolis et al. [9] uses a temperature variable, T, that is 
decreased through the optimization process following a 
specified scheduled or by using a function. Considering 
that a new solution is generated in the neighborhood of the 
current solution value, the difference between the current 
and new solutions is represented by Eδ  (5), known as 
energy gradient. In the context of minimization problems, 
the replacement of the current solution by the new solution 
is performed using a condition defined by (6) based on a 
Boltzmann probability threshold. Figure 1 illustrates the 
basic simulated annealing algorithm for minimization 
problems. 
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t=0 
T= Tinitial 
initialize ( )tx

r
 randomly 

while(!(termination criterion)) 
  while(!(repetition criterion)) 
    generate a new trial solution ( )1+tx

r
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    if  ( 0<Eδ ) 
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      ( ) ( )1+= txtx
rr

 
    end 
  end 
  t=t+1 
T=annealing(T,t) 
end 

Fig. 1.  Basic simulated annealing algorithm.  

B. Genetic Algorithm 
The genetic algorithm (GA), is a randomly based 

technique to search for the best problem solutions, and was 

proposed by John Holland [7]. Over the last 30 years, GAs 
have been used to solve a wide range of search, 
optimization, and machine learning problems [5]. The basic 
GA idea is to maintain a set of data structures, population, 
that represents candidate solutions for a certain problem. 
Population elements compete between them to pass their 
genetic material to future generations by recombination, 
following the survival of the fittest principle. In this way, 
the fitter elements of current population take part on the 
matting pool used to form the new population. Three 
processes are used to make the transition (reproduction) 
from one population to the next: selection, crossover and 
mutation. The basic genetic algorithm is shown in Figure 2, 
considering that a population X of potential solutions with 
size m is represented by (7), with d representing the 
dimension index. 

( ) ( ) ( )( ) ndmitxtxtxtX idii ≤≤≤≤= 11,,,)( 21 K (7) 
t=0   
initialize population X(t) 
evaluate X(t) 
while(!(termination criterion)) 
  t=t+1  
  select parents to mate   
  generate children with crossover 
  mutation   
  evaluate X(t+1) 
  replace old population by the new population elements 
end 

Fig. 2.  Basic genetic algorithm.  
 

C. Population based incremental learning 
The population based incremental learning algorithm 

(PBIL) was developed by Baluja [3] and combines features 
of GA and hill-climbing algorithm. Each element is 
represented by a binary vector b

r
, with strings concatenated 

according with the number of variables involved in the 
optimization. A probability vector is used to guide the 
search, p

r
 (8), where n is the binary string length, d is the 

dimension index and res is the number of resolution bits 
used to encode each of the real value elements of the vector 
x
r

.  Each vector p
r

 element represent the probability of the 
string b corresponding bits are assigned to 1 as it is shown 
by (9), and are initialized with a probability of 0.5. The 
random function returns a pseudo-random number 
uniformly distributed in the interval [0,1]. As the search 
evolves, the probability vector values moves away from the 
equilibrium point, 0.5, towards 0 or 1. The basic PBIL 
algorithm it is represented by Figure 3. 
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t=0  
initialize probability vector ( )5.0,,5.0,5.0 K

r
=p  

while(!(termination criterion)) 
  t=t+1  
  generate new population X(t) using the probability vector 
  evaluate X(t) 
  update the  probability vector    
  adjust the probability vector      
end 

Fig. 3: Basic PBIL algorithm. 
 

The generation of each population member is done 
randomly for each bit by sampling the corresponding 
element of the probability vector using expression (9). In 
each PBIL cycle the solutions are decoded and evaluated, 
allowing finding the best member in terms of performance 
(best). The probability vector is thus updated towards the 
direction of the best solution found, using (10) in which LR 
represents the Learning Rate. 

 
( ) njbLRtpLRtp jbestjj ≤≤+−=+ 1*)(*1)1( (10) 

 
The probability vector moves away from the worst 

population element in each generation, only in the bits that 
are different from the ones in the best element: 
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in which NLR represents the Negative Learning Rate. In the 
final block of the basic PBIL cycle (Figure 3) an 
adjustment of the probability vector is done to avoid 
premature convergence in a local maximum. This 
adjustment can be implemented by using the original 
mutation operator: 
 

( )( ) njtpFFtptp jjj ≤≤−−=+ 15.0)()1( (12) 

 
where: ρ represents the mutation probability and ρ_d 
represents the quantity that the corresponding bit is 
mutated.  It can also be done by using a mutation variation 
proposed by [6], that uses a Forgetting Factor (FF): 
 

( )( ) njtpFFtptp jjj ≤≤−−=+ 15.0)()1( (13) 

 
which updates the probability vector towards the neutral 
value, 0.5, in a small quantity. 

D. Differential evolution 
Considering a set X of potential solutions represented by 

(14) with size m, equation (3) can be rewritten as (15) with 
d representing the dimension index. 
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In the differential evolution algorithm (DE) proposed by 

Storn and Price [14], a trial vector n
v Rx ∈
r

 is generated in 
each iteration for each population member using (16) and 
the increment δ  is evaluated using (17). In these 
expressions

1rx
r

, 
2rx

r
, 

3rx
r

 are vectors that may be selected 

randomly from the population set X in each iteration, and 
+∈ RF  is a constant defined prior to the search procedure. 

In this case 
1rx
r

 is the best solution vector found in the 

previous iteration. 
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The trial vector obtained with (16) and (17) is then 

crossed with the current population element ix
r

 accordingly 
to a crossover scheme, binomial or exponential [14], with a 
pre-defined probability defined by [ ]1,0∈cp  resulting in a 
new vector cix

r
 (18). If the value returned by the objective 

function for the crossed trial vector is better or equal than 
the value obtained for the current vector, the latest is 
replaced by the former. This is represented by (19) for a 
minimization problem. The basic DE algorithm is 
illustrated by Figure 4. 

t=0 
initialize population X(t) 
while(!(termination criterion)) 
  evaluate X(t) 
  t=t+1  
  while(i<=population size) 

    generate  the incremental vector  ( )1+tiδ
r

    

    generate new solution vector ( )1+txvi
r

 

 ( ) ( ) ( )( ) mitxtxcrossovertx viici ≤≤+=+ 11,1
rrr

 
    replace current solution by new solution if 

( )( ) ( )( )11 +≤+ txftcxf ii
rr

  
    i=i+1 
  end 
end 

Fig. 4: Basic differential evolution algorithm. 

E. Particle swarm optimization 
In the particle swarm optimization algorithm (PSO) 

proposed by Kennedy and Eberhart [8] each particle of a 
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swarm with size m, moves through a n-dimensional search 
space, with positions and velocities defined for the current 
evolutionary iteration t by (20) and (21), respectively. The 
velocity vector set, V (21), corresponds to the set of 
incremental vectors as it is indicated by (22). 
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The increment (or velocity) is evaluated using (23) and it 

is used to determine particles new position with (24), in 
which pid(t) and pgd(t) represent the best previous position 
of particle i and the global best, respectively, in the current 
iteration t, for a pre-defined neighborhood type. Parameter 
ϕc is known as the Cognitive Constant and ϕs as the Social 
Constant, representing uniformly distributed random 
numbers generated in a pre-defined interval. 
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An additional parameter was incorporated into equation 

(24) by [13] resulting in (25), in which ω was termed 
Inertia Weight. 
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t=0  
Initialize population X(t) 
while(!(termination criterion)) 
  Evaluate X(t)  
  t=t+1  
  while(i<=population size) 

    generate  the incremental vector  ( )1+tiδ
r

 

    generate new solution vector ( )1+txi
r

 
    i=i+1 
  end 
  replace X(t) by X(t+1) 
end 

Fig. 5: Basic particle swarm optimization algorithm.  
 

The value given to the inertia weight will affect the type 
of search in the following way: a large inertia weight will 
direct the PSO for a global search while a small inertia 
weight will direct the PSO for a local search. The PSO 
algorithm is illustrated by Figure 5.  

III. EVOLUTIONARY ALGORITHMS ASSIGNMENT: 
OPTIMIZATION OF CASCADED PID CONTROL STRUCTURES 

Cascade control is one of the most successful methods 
for enhancing single input single loop systems control 
performance. A series cascade control strategy combines 
two feedback controllers, with the primary controller 
output serving as the secondary controller set-point as it is 
shown in Figure 6. 

 

Gc1(s) Gp2(s)Gc2(s) Gp1(s)v1
e1

+ - + -

e2u1 u2 y2 y1

Fig. 6:  Series Cascade Control System. 
  
The cascaded PID controllers are governed by: 
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in which: )()()( 11 tytvte −= , )()()( 212 tytute −=  are the 
primary and secondary loop error signals, y1(t), y1f (t), y2(t) 
and y2f (t) are the primary and secondary loop non-filtered 
and filtered outputs, respectively, Kp represents the 
proportional gain, Ti and Td the integral and derivative time 
constants. The derivative action is applied to the system 
output in order to avoid derivative kicking and filtered 
using (27), with Nf representing the filter constant. 
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In order to use the reviewed algorithms to optimize the 

PID gains it is necessary to encode the tuning parameters. 
Thus each solution vector represents the proportional, 
integral and derivative parameters for both loops, by using 
either a binary or real-based coding scheme. The controller 
design is accomplished by optimizing the system response 
to a unit set-point change minimizing a time-domain 
performance criterion. In this study the well known 
Integral of the Time-Weighted Absolute Error (ITAE) is 
adopted. 

IV. SIMULATION RESULTS  
The models selected for the primary and secondary loop 

processes dynamics are represented by (28), were 
deliberately selected equal in order to make the design 
procedure more complicated. Thus, the simultaneous 
design of the primary and secondary cascaded controllers is 
recommended, and an optimization algorithm can be used. 
The search space for the controller parameters is defined by 
the set [0 0 0.1,5 5 5] for the primary controller and [0 0 
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0,5 5 5] for the secondary controller. The time period 
considered for each  step response is 100 seconds and 
Nf=10. 
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The number of objective function evaluations is set equal 

to 1500 in order to perform a fair comparison between all 
the optimization techniques. The initial set is generated 
randomly, and thus may include non-viable solutions 
corresponding to gains that make the system unstable. 

In the SA algorithm the number of iterations used is 
N=15 and the repetition cycle is executed 100 times per 
iteration. The initial temperature is set to Tinitial=100 and 
the annealing function is represented by TT *99.0= . The 
GA was implemented with: a population of size m=30, a 
number of generations N=50, a binary encoding with 10 
bits per dimensional parameter, a stochastic sampling 
selection scheme, a single point crossover scheme with 
probability pc=0.6 and a mutation probability of 
pm=0.033. The new population replaces the old 
population, except for the best member which is duplicated 
in the new population replacing the worst element. In the 
PBIL algorithm the population size used is m=30, the 
number of iterations is N=50, a binary encoding is used 
with 10 bits per dimensional parameter, a learning rate 
LR=0.1 and a forgetting rate of FF=0.5%. The update and 
adjustment of the probability vector is done using 
expressions (10) and (13). The population size used in the 
PSO algorithm is n=30 and the number of iterations is 
N=50, The inertia weight ω is set to change linearly in the 
interval [0.7,0.4] during the evolution. Parameters ϕ1 and 
ϕ2 are uniformly distributed random numbers generated in 
the interval [0,1]. The population size used in the DE 
algorithm is n=30 and the number of iterations is N=50. A 
binomial crossover operator is adopted with a probability 
pc=0.8, and the amplification parameter is set to F=0.8. 
The results obtained with all the reviewed algorithms for 
the cascaded PID control design are presented in Tables 1 
and 2, for a number of 20 runs. The results show that PSO 
algorithm achieved the best ITAE trial result, while in 
terms of mean best result and standard deviation the DE 
algorithm yields better results. 

 
TABLE 1: BEST PID GAINS. 

Best PID Gains Algorithm 
Kp1 Ti1 Td1 Kp2 Ti2 Td2 

SA 2,517 0,092 2,522 1,315 0,309 2,570 
GA 0,753 0,312 0,368 4,615 0,285 0,318 

PBIL 1,984 0,142 1,310 2,185 0,196 1,144 
PSO 1,175 0,301 0,197 5,000 0,000 0,115 
DE 1,122 0,317 0,100 4,307 0,000 0,000 

 
 

TABLE 2: STATISTICAL TEST DATA. 

Algorithm Best 
ITAE 

Worst 
ITAE 

Mean 
Best 
ITAE 

Standard 
Deviation 

SA 1166,51 1753521 180926,3 524221,7 
GA 1010,84 3406,80 1991,30 831,836 

PBIL 977,68 1958,07 1271,80 449,273 
PSO 637,53 2910,67 1063,08 735,260 
DE 710,88 1818,74 828,547 330,344 

 
The cascaded system simulated responses to a reference 

step input are shown in Figures 7 and 8, for the system 
output and control system, respectively. The PID controller 
parameters used correspond to the best results obtained 
with the respective optimization technique. Figure 9 
illustrates the convergence rate over 20 runs corresponding 
to the mean ITAE performance index for each DE and PSO 
algorithms. It shows that the DE algorithm has a faster 
convergence rate in the beginning and end of the runs.   
 

 
Fig. 7. Set-point tracking responses for the cascaded system 

V. CONCLUSION 
Some of the most popular modern heuristics were 

reviewed in the context of an evolutionary algorithms 
option assignment, requiring the optimization of PID 
controllers for cascaded feedback loops. The selected 
techniques are: simulated annealing, genetic algorithm, 
population based incremental learning algorithm, particle 
swarm optimization algorithm and the differential evolution 
algorithm. The best test result was achieved with the 
particle swarm optimization algorithm, while for the mean 
of the best result and standard deviation, the differential 
evolution algorithm delivered the best results. It is 
important to note that the result analysis is conditioned by 
the assignment specification in terms of the small number 
of function evaluations and population sizes used in each 
optimization trial. This requirement is important in practice 
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to make the PID controller optimization as fast as possible. 
Further work should be carried out by considering use a 
higher number of function evaluations and population sizes 
for each trial as well as different settings for each 
optimization technique.  
 

 
Fig. 8. Control signals for the primary controller of the cascaded system.  

 
Fig. 9. Convergence plot for the mean best fitness over the 20 runs for the 
DE and PSO algorithms.   
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