

Abstract— A set of modern heuristic techniques is reviewed

in the context of PID control structures optimization. The
selected techniques are: simulated annealing, genetic
algorithm, population based incremental learning algorithm,
particle swarm optimization algorithm and the differential
evolution algorithm. An introduction to each algorithm is
provided followed by an illustrative example based in a
simulation assignment of an evolutionary algorithms course.
Some conclusions are presented about the effectiveness of the
reviewed heuristics based on the simulation results.

I. INTRODUCTION
HE study of optimization techniques within
engineering courses is of crucial importance. Indeed,

this is well stated in the following quotation from Schwefel
[12] extracted from Michalewicz book [10] introductory
chapter: "There is scarcely a modern journal, whether of
engineering, economics, management, mathematics,
physics or social sciences, in which the concept
'optimization' is missing from the subject index". Thus, this
is a topic that should be addressed in lecturing modern
heuristics to engineering courses as one of their main
applications is to solve optimization problems. This is the
case of the course entitled evolutionary algorithms of the
MSc in Engineering Technologies at the UTAD University
in Portugal. During this course several assignments were
given to students consisting either in elaborating a
heuristic/evolutionary computation topic survey or to apply
an evolutionary inspired algorithm to solve an engineering
problem. One of the selected assignments, which motivated
this article, concerns the optimization of proportional
integral and derivative (PID) controllers in the continuous
time domain using different modern heuristics. In this
paper a series cascaded control configuration is considered.

The PID controller is the most popular controller used in
industrial control applications. The overwhelming
dominance of PID controller over other forms of feedback,
in the last fifty years, its due to its simple structure and

Manuscript received March 20, 2005.
P. B. de Moura Oliveira is with the Universidade de Trás-os-Montes e

Alto Douro and CETAV- Centro de Estudos das Tecnologias Ambiente e
Vida, 5000-911 Vila Real, Portugal (phone: 351-259-350339; fax: 351-
259-350300; e-mail: oliveira@ utad.pt).

reliability in a wide range of operating conditions. Some
estimates state that more than 95% of the controllers used
in process control applications are of PID type [1]. Due to
the wide acceptance of PID controllers within industry
many tuning rules have been proposed for this type of
controller, since the original work of Ziegler and Nichols
[15]. However, despite the huge amount of existing tuning
rules for PI/PID controllers, the test of a large set of
industrial plants [4], indicated that 30% of the controllers
were operated manually and 65% were poorly tuned.
Indeed, plant operators tend to tune PID controllers by trial
and error or using very simple tuning rules. A plausible
explanation is the lack of appropriate educational
background from most of the process control operators [11]
concerning the proper use of tuning methodologies. In
some cases, the control operator can be responsible for
hundreds of process control loops [2], with a wide range of
system dynamics, having to design and tune PID
controllers to meet performance and robustness
specifications. Considering the huge number of tuning rules
proposed for different process models and the limited
amount of effort that the plant operator can devote to each
loop, the existence of an universal tuning method would
simplify their role significantly. Because there is not an
universal tuning method, the use of an optimization
algorithm, particularly using modern heuristics, constitutes
a global tool to the design and tuning of PID controllers for
a wide range of control engineering applications.

II. REVIEW OF SOME MODERN HEURISTIC ALGORITHMS

This section provides a short review of some modern
heuristic algorithms from an optimization perspective. The
algorithms description is based on their original forms with
minor extensions, in order to maintain the conceptual
simplicity that made them easily understandable,
motivating their wide implementation and use.

A potential solution for a general combinatorial
optimization problem in a n-dimensional search space
defined by an objective function f (1), can be represented
by a vector Ω∈x

r
 (2), in which t represents the current

iteration and Ω the feasible set. An important issue within
any optimization methodology is how to generate a new

Modern Heuristics Review for PID Control

P. B. de Moura Oliveira

T

6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia

trial solution vector () Ω∈+1tx
r

. This can be generated

from the current vector by using equation (3), with δ
r

representing an incremental vector (4).

0,: ≠Ω→⊆Ω RRf n (1)
() () () ()txtxtxtx n,,, 21 K
v

= (2)

() () ()ttxtx δ
rrr

+=+1 (3)

() () () ()tttt nδδδδ ,,, 21 K
r

= (4)

A. Simulated annealing
The basic simulated annealing algorithm proposed by

Metropolis et al. [9] uses a temperature variable, T, that is
decreased through the optimization process following a
specified scheduled or by using a function. Considering
that a new solution is generated in the neighborhood of the
current solution value, the difference between the current
and new solutions is represented by Eδ (5), known as
energy gradient. In the context of minimization problems,
the replacement of the current solution by the new solution
is performed using a condition defined by (6) based on a
Boltzmann probability threshold. Figure 1 illustrates the
basic simulated annealing algorithm for minimization
problems.

()() ()()txftxfE

rr
−+= 1δ (5)

() ()
() () []

⎪
⎪
⎩

⎪⎪
⎨

⎧

>
⎟
⎠

⎞
⎜
⎝

⎛+
⇐+=

<+=

otherwiserand

T
E

txtx

Eiftxtx

1,0
exp1

11

01

δ

δ
rr

rr

(6)

t=0
T= Tinitial
initialize ()tx

r
 randomly

while(!(termination criterion))
 while(!(repetition criterion))
 generate a new trial solution ()1+tx

r

 ()() ()()txftxfE
rr

−+= 1δ

 if (0<Eδ)

 () ()1+= txtx
rr

 else if []1,0
exp1

1 rand

T
E

>
⎟
⎠

⎞
⎜
⎝

⎛+
δ

 () ()1+= txtx
rr

 end
 end
 t=t+1
T=annealing(T,t)
end

Fig. 1. Basic simulated annealing algorithm.

B. Genetic Algorithm
The genetic algorithm (GA), is a randomly based

technique to search for the best problem solutions, and was

proposed by John Holland [7]. Over the last 30 years, GAs
have been used to solve a wide range of search,
optimization, and machine learning problems [5]. The basic
GA idea is to maintain a set of data structures, population,
that represents candidate solutions for a certain problem.
Population elements compete between them to pass their
genetic material to future generations by recombination,
following the survival of the fittest principle. In this way,
the fitter elements of current population take part on the
matting pool used to form the new population. Three
processes are used to make the transition (reproduction)
from one population to the next: selection, crossover and
mutation. The basic genetic algorithm is shown in Figure 2,
considering that a population X of potential solutions with
size m is represented by (7), with d representing the
dimension index.

() () ()() ndmitxtxtxtX idii ≤≤≤≤= 11,,,)(21 K (7)
t=0
initialize population X(t)
evaluate X(t)
while(!(termination criterion))
 t=t+1
 select parents to mate
 generate children with crossover
 mutation
 evaluate X(t+1)
 replace old population by the new population elements
end

Fig. 2. Basic genetic algorithm.

C. Population based incremental learning
The population based incremental learning algorithm

(PBIL) was developed by Baluja [3] and combines features
of GA and hill-climbing algorithm. Each element is
represented by a binary vector b

r
, with strings concatenated

according with the number of variables involved in the
optimization. A probability vector is used to guide the
search, p

r
 (8), where n is the binary string length, d is the

dimension index and res is the number of resolution bits
used to encode each of the real value elements of the vector
x
r

. Each vector p
r

 element represent the probability of the
string b corresponding bits are assigned to 1 as it is shown
by (9), and are initialized with a probability of 0.5. The
random function returns a pseudo-random number
uniformly distributed in the interval [0,1]. As the search
evolves, the probability vector values moves away from the
equilibrium point, 0.5, towards 0 or 1. The basic PBIL
algorithm it is represented by Figure 3.

() () ()() resdnjtptptptp j *1,,,)(21 =≤≤= K

r
(8)

[] ()
[] () njmi

btprand
btprand

ijj

ijj ≤≤≤≤
⎩
⎨
⎧

=⇒≥
=⇒<

11
01,0
11,0

(9)

6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia

t=0
initialize probability vector ()5.0,,5.0,5.0 K

r
=p

while(!(termination criterion))
 t=t+1
 generate new population X(t) using the probability vector
 evaluate X(t)
 update the probability vector
 adjust the probability vector
end

Fig. 3: Basic PBIL algorithm.

The generation of each population member is done
randomly for each bit by sampling the corresponding
element of the probability vector using expression (9). In
each PBIL cycle the solutions are decoded and evaluated,
allowing finding the best member in terms of performance
(best). The probability vector is thus updated towards the
direction of the best solution found, using (10) in which LR
represents the Learning Rate.

() njbLRtpLRtp jbestjj ≤≤+−=+ 1*)(*1)1((10)

The probability vector moves away from the worst

population element in each generation, only in the bits that
are different from the ones in the best element:

()

njbb

bNLRtpNLRtp

jworstjbest

jbestjj

≤≤≠⇐

+−=+

1

*)(*1)1(
(11)

in which NLR represents the Negative Learning Rate. In the
final block of the basic PBIL cycle (Figure 3) an
adjustment of the probability vector is done to avoid
premature convergence in a local maximum. This
adjustment can be implemented by using the original
mutation operator:

()() njtpFFtptp jjj ≤≤−−=+ 15.0)()1((12)

where: ρ represents the mutation probability and ρ_d
represents the quantity that the corresponding bit is
mutated. It can also be done by using a mutation variation
proposed by [6], that uses a Forgetting Factor (FF):

()() njtpFFtptp jjj ≤≤−−=+ 15.0)()1((13)

which updates the probability vector towards the neutral
value, 0.5, in a small quantity.

D. Differential evolution
Considering a set X of potential solutions represented by

(14) with size m, equation (3) can be rewritten as (15) with
d representing the dimension index.

() () ()() mitxtxtxtX iniii ≤≤= 1,,,)(21 K (14)
() () () ndmittxtx ididid ≤≤≤≤++=+ 1111 δ (15)

In the differential evolution algorithm (DE) proposed by

Storn and Price [14], a trial vector n
v Rx ∈
r

 is generated in
each iteration for each population member using (16) and
the increment δ is evaluated using (17). In these
expressions

1rx
r

,
2rx

r
,

3rx
r

 are vectors that may be selected

randomly from the population set X in each iteration, and
+∈ RF is a constant defined prior to the search procedure.

In this case
1rx
r

 is the best solution vector found in the

previous iteration.

() () ()
[] imrndmi

ttxtx iddridv

≠∈≤≤≤≤

++=+

,111

11

1

1
δ

(16)

() () ()()
[] [] 213212 ,1,1

111
32

rrimrrrimr

ndmitxtxFt drdrid

≠≠≠∈≠≠≠∈

≤≤≤≤−=+δ
(17)

() () ()() mitxtxcrossovertx viici ≤≤+=+ 11,1
rrr

(18)
() () ()() ()()

mi
txftcxfiftcxtx iiii

≤≤

+≤++=+

1
1111

rrrr

(19)

The trial vector obtained with (16) and (17) is then

crossed with the current population element ix
r

 accordingly
to a crossover scheme, binomial or exponential [14], with a
pre-defined probability defined by []1,0∈cp resulting in a
new vector cix

r
 (18). If the value returned by the objective

function for the crossed trial vector is better or equal than
the value obtained for the current vector, the latest is
replaced by the former. This is represented by (19) for a
minimization problem. The basic DE algorithm is
illustrated by Figure 4.

t=0
initialize population X(t)
while(!(termination criterion))
 evaluate X(t)
 t=t+1
 while(i<=population size)

 generate the incremental vector ()1+tiδ
r

 generate new solution vector ()1+txvi
r

 () () ()() mitxtxcrossovertx viici ≤≤+=+ 11,1
rrr

 replace current solution by new solution if

()() ()()11 +≤+ txftcxf ii
rr

 i=i+1
 end
end

Fig. 4: Basic differential evolution algorithm.

E. Particle swarm optimization
In the particle swarm optimization algorithm (PSO)

proposed by Kennedy and Eberhart [8] each particle of a

6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia

swarm with size m, moves through a n-dimensional search
space, with positions and velocities defined for the current
evolutionary iteration t by (20) and (21), respectively. The
velocity vector set, V (21), corresponds to the set of
incremental vectors as it is indicated by (22).

() () ()() mitxtxtxtX iniii ≤≤= 1,,,)(21 K (20)

() () () ()() mitvtvtvtV iniii ≤≤= 1,,, 21 K (21)
() () () ()() ()

() () ()() mitvtvtv
tVtttt

inii

iiniii
≤≤=

==∆

1,,,
,,,

21

21
K

K δδδ
(22)

The increment (or velocity) is evaluated using (23) and it

is used to determine particles new position with (24), in
which pid(t) and pgd(t) represent the best previous position
of particle i and the global best, respectively, in the current
iteration t, for a pre-defined neighborhood type. Parameter
ϕc is known as the Cognitive Constant and ϕs as the Social
Constant, representing uniformly distributed random
numbers generated in a pre-defined interval.

() () () () ()()

() ()() ndmitxtp

txtptidvtidvt

idgds

ididcid

≤≤≤≤−+

−+=+=+

11.

.11

ϕ

ϕδ
(23)

() () () ndmittxtx ididid ≤≤≤≤++=+ 1111 δ (24)

An additional parameter was incorporated into equation

(24) by [13] resulting in (25), in which ω was termed
Inertia Weight.

() () () () ()()

() ()() ndmitxtp

txtptidvtidvt

idgds

ididcid

≤≤≤≤−+

−+=+=+

11.

.11

ϕ

ϕωδ
(25)

t=0
Initialize population X(t)
while(!(termination criterion))
 Evaluate X(t)
 t=t+1
 while(i<=population size)

 generate the incremental vector ()1+tiδ
r

 generate new solution vector ()1+txi
r

 i=i+1
 end
 replace X(t) by X(t+1)
end

Fig. 5: Basic particle swarm optimization algorithm.

The value given to the inertia weight will affect the type
of search in the following way: a large inertia weight will
direct the PSO for a global search while a small inertia
weight will direct the PSO for a local search. The PSO
algorithm is illustrated by Figure 5.

III. EVOLUTIONARY ALGORITHMS ASSIGNMENT:
OPTIMIZATION OF CASCADED PID CONTROL STRUCTURES

Cascade control is one of the most successful methods
for enhancing single input single loop systems control
performance. A series cascade control strategy combines
two feedback controllers, with the primary controller
output serving as the secondary controller set-point as it is
shown in Figure 6.

Gc1(s) Gp2(s)Gc2(s) Gp1(s)v1
e1

+ - + -

e2u1 u2 y2 y1

Fig. 6: Series Cascade Control System.

The cascaded PID controllers are governed by:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+= ∫ dt

(t)yd
T(t)dte

T
(t)eK(t)u f,t

o
,d,

,i
,,p,

21
2121

21
212121

1

 (26)

in which:)()()(11 tytvte −= ,)()()(212 tytute −= are the
primary and secondary loop error signals, y1(t), y1f (t), y2(t)
and y2f (t) are the primary and secondary loop non-filtered
and filtered outputs, respectively, Kp represents the
proportional gain, Ti and Td the integral and derivative time
constants. The derivative action is applied to the system
output in order to avoid derivative kicking and filtered
using (27), with Nf representing the filter constant.

)()(
)(

2,12,1
2,1 tyty

dt
tyd

N
T

f
f

f

d =+ (27)

In order to use the reviewed algorithms to optimize the

PID gains it is necessary to encode the tuning parameters.
Thus each solution vector represents the proportional,
integral and derivative parameters for both loops, by using
either a binary or real-based coding scheme. The controller
design is accomplished by optimizing the system response
to a unit set-point change minimizing a time-domain
performance criterion. In this study the well known
Integral of the Time-Weighted Absolute Error (ITAE) is
adopted.

IV. SIMULATION RESULTS
The models selected for the primary and secondary loop

processes dynamics are represented by (28), were
deliberately selected equal in order to make the design
procedure more complicated. Thus, the simultaneous
design of the primary and secondary cascaded controllers is
recommended, and an optimization algorithm can be used.
The search space for the controller parameters is defined by
the set [0 0 0.1,5 5 5] for the primary controller and [0 0

6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia

0,5 5 5] for the secondary controller. The time period
considered for each step response is 100 seconds and
Nf=10.

() ()
s

p e
s

sG −

+
=

3
1

2,1 (28)

The number of objective function evaluations is set equal

to 1500 in order to perform a fair comparison between all
the optimization techniques. The initial set is generated
randomly, and thus may include non-viable solutions
corresponding to gains that make the system unstable.

In the SA algorithm the number of iterations used is
N=15 and the repetition cycle is executed 100 times per
iteration. The initial temperature is set to Tinitial=100 and
the annealing function is represented by TT *99.0= . The
GA was implemented with: a population of size m=30, a
number of generations N=50, a binary encoding with 10
bits per dimensional parameter, a stochastic sampling
selection scheme, a single point crossover scheme with
probability pc=0.6 and a mutation probability of
pm=0.033. The new population replaces the old
population, except for the best member which is duplicated
in the new population replacing the worst element. In the
PBIL algorithm the population size used is m=30, the
number of iterations is N=50, a binary encoding is used
with 10 bits per dimensional parameter, a learning rate
LR=0.1 and a forgetting rate of FF=0.5%. The update and
adjustment of the probability vector is done using
expressions (10) and (13). The population size used in the
PSO algorithm is n=30 and the number of iterations is
N=50, The inertia weight ω is set to change linearly in the
interval [0.7,0.4] during the evolution. Parameters ϕ1 and
ϕ2 are uniformly distributed random numbers generated in
the interval [0,1]. The population size used in the DE
algorithm is n=30 and the number of iterations is N=50. A
binomial crossover operator is adopted with a probability
pc=0.8, and the amplification parameter is set to F=0.8.
The results obtained with all the reviewed algorithms for
the cascaded PID control design are presented in Tables 1
and 2, for a number of 20 runs. The results show that PSO
algorithm achieved the best ITAE trial result, while in
terms of mean best result and standard deviation the DE
algorithm yields better results.

TABLE 1: BEST PID GAINS.

Best PID Gains Algorithm
Kp1 Ti1 Td1 Kp2 Ti2 Td2

SA 2,517 0,092 2,522 1,315 0,309 2,570
GA 0,753 0,312 0,368 4,615 0,285 0,318

PBIL 1,984 0,142 1,310 2,185 0,196 1,144
PSO 1,175 0,301 0,197 5,000 0,000 0,115
DE 1,122 0,317 0,100 4,307 0,000 0,000

TABLE 2: STATISTICAL TEST DATA.

Algorithm Best
ITAE

Worst
ITAE

Mean
Best
ITAE

Standard
Deviation

SA 1166,51 1753521 180926,3 524221,7
GA 1010,84 3406,80 1991,30 831,836

PBIL 977,68 1958,07 1271,80 449,273
PSO 637,53 2910,67 1063,08 735,260
DE 710,88 1818,74 828,547 330,344

The cascaded system simulated responses to a reference

step input are shown in Figures 7 and 8, for the system
output and control system, respectively. The PID controller
parameters used correspond to the best results obtained
with the respective optimization technique. Figure 9
illustrates the convergence rate over 20 runs corresponding
to the mean ITAE performance index for each DE and PSO
algorithms. It shows that the DE algorithm has a faster
convergence rate in the beginning and end of the runs.

Fig. 7. Set-point tracking responses for the cascaded system

V. CONCLUSION
Some of the most popular modern heuristics were

reviewed in the context of an evolutionary algorithms
option assignment, requiring the optimization of PID
controllers for cascaded feedback loops. The selected
techniques are: simulated annealing, genetic algorithm,
population based incremental learning algorithm, particle
swarm optimization algorithm and the differential evolution
algorithm. The best test result was achieved with the
particle swarm optimization algorithm, while for the mean
of the best result and standard deviation, the differential
evolution algorithm delivered the best results. It is
important to note that the result analysis is conditioned by
the assignment specification in terms of the small number
of function evaluations and population sizes used in each
optimization trial. This requirement is important in practice

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

y

SA
GA
PBIL
PSO
DE

6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia

to make the PID controller optimization as fast as possible.
Further work should be carried out by considering use a
higher number of function evaluations and population sizes
for each trial as well as different settings for each
optimization technique.

Fig. 8. Control signals for the primary controller of the cascaded system.

Fig. 9. Convergence plot for the mean best fitness over the 20 runs for the
DE and PSO algorithms.

REFERENCES.
[1] Åström, K. J. and Hägglund, T. (1995). PID Controllers: Theory,

Design and Tuning, Instrument Society of America, Research
Triangle Park, 2nd edition.

[2] Åström, K. J. and Hägglund, T. (2000a). The Future of PID Control,
IFAC Work. on Digital Control: Past, present and future, Spain,
Terrassa, pp. 19-30.

[3] Baluja, S., (1994). Population Based Incremental Learning: A
Method for Integrating Genetic search Based Function Optimization
and Competitive Learning, Technical report CMU-CS-95-163,
School of Computer Science, Carnegie Melon University, USA.

[4] Ender D. B. (1993). Process Control Performance: not as Good as
you Think, Control Engineering, September, pp. 180-190.

[5] Goldberg E D, (1989). Genetic Algorithms in Search, Optimization
and Machine Learning, Adison Wesley P.C.

[6] Greene J. R., (1997). A Role for Simple, Robust 'Black-Box'
Optimisers in the Evolution of Engineering Systems and Artefacts.,
Second IEE Conference on GAs in Eng. Systems: Innovations and
Applications (GALESIA'97), No. 446, pp. 427-432 , September,
Sheffield, UK.

[7] Holland J. H., (1975). Adaptation in Natural and Artificial Systems,
1st MIT Press ed.

[8] Kennedy J. and Eberhart R.C. (1995). Particle swarm optimization.
Proc. IEEE Int. Conf. on Neural Networks, Perth, Australia, pp.
1942-1948.

[9] Metropolis, N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H.
and Teller, E., (1953), Equation of state calculation by fast
computing machines,. J. of Chem. Phys., 21, pp. 1087-1091.

[10] Michalewicz, Z. (1992). Genetic Algorithms+Data
Structures=Evolution Programs, Second edition, Springer Verlag,
pp.16.

[11] Pomerleau, A. and Poulin, É. (2002). A New Approach for Teaching
Process Control, Proc. of IASTED MIC'2002, February, Innsbruck,
Austria, pp. 275-279.

[12] Schwefel, H. P. (1981). Numerical Optimization for Computer
Models, John Wiley, Chicester, UK.

[13] Shi Y. and Eberhart R. C. (1999). Empirical Study of Particle Swarm
Optimization, Proceedings of the 1999 IEEE Congress of
Evolutionary Computation, 3, pp. 1945-1950.

[14] Storn R. and Price K. (1997). Differential Evolution: a Simple and
Efficient Adaptive Scheme for Global Optimization Over Continuous
Spaces. Journal of Global Optimization Vol. 11, Nº 4, pp. 341-349.

[15] Ziegler, J. G. and Nichol,s N. B., (1942). Optimum Settings for
Automatic Controllers, Transactions of the ASME, 64, pp. 759-768.

5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

iterations

J

DE
PSO

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

time

u1

SA
GA
PBIL
PSO
DE

6th International PhD Workshop on Systems and Control, October 4-8, 2005 Izola, Slovenia

